МИНОБРНАУКИ РОССИ

Воткинский филиал

Федерального государственного бюджетного образовательного учреждения высшего образования

«Ижевский государственный технический университет имени М.Т. Калашникова» (ВФ ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

УТВЕРЖДАЮДиректор

И.А. Давыдов
июня 2019 г.

Рабочая программа

по дисциплине: Математические модели функционирования ракетно-космических систем и комплексов

для специальности: <u>24.05.01 – Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов.</u> Специализация – Ракеты с ракетными двигателями <u>твердого топлива</u>

форма обучения: очная

Общая трудоемкость дисциплины составляет: 3 зачетных единиц(ы)

Вид учебной работы			Семестры			
			9			
Контактные занятия "(всего)		48	48			
В том числе		-	-			
Лекции		16	16			
Практические занятия (ПЗ)		16	16			
Семинары (С)						
Лабораторные работы (ЛР)		16	16			
Самостоятельная работа "(всего)		60	60			
В том числе		-	1			
Курсовой проект (работа)		-	ı			
Расчетно-графические работы		-	1			
Реферат		-	1			
Другие виды самостоятельной работы						
Вид промежуточной аттестации: зачет						
	часы	108	108			
Общая трудоемкость	з.е.	3	3			

Кафедра «Ракетостроение»

Составитель: Уразбахтин Федор Асхатович, доктор технических наук, профессор

Рабочая программа составлена на основании ФГОС ВО по специальности <u>24.05.01</u> — <u>Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов.</u> Специализация — Ракеты с с ракетными двигателями твердого топлива №1517 от 01.12.2016 г. и утверждена на заседании кафедры.

Протокол от 20 апреля 2019 г. №8___

Заведующий кафедрой «Ракетостроение»

/Ф.А.Уразбахтин

22 апреля 2019 г.

СОГЛАСОВАНО

Председатель учебно-методической комиссии по УГСН «24.05.01 – «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов (уровень специалитета)», специализация — Ракеты с ракетными двигателями твердого топлива»

Уразбахтин Ф.А.

24 апреля 2019 г.

Количество часов рабочей программы соответствует количеству часов рабочего учебного плана по специальности <u>24.05.01</u> – Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов, специализация – Ракеты с ракетными двигателями твердого топлива

Ведущий специалист учебной части ВФ ФГБОУ имени М.Т. Калашникова

О С Соловьева Л.Н.

25 апреля 2019 г.

Аннотация к дисциплине Математические модели функционирования ракетно-космических систем и комплексов Названиедисииплины Математические модели функционирования ракетно-космических систем и комплексов 83 2019/2020 Номер Академический год кафедра Ракетостроение Программа 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетнокосмических комплексов», специализация «Ракеты с ракетными двигателями тверлого топпива» Гарант модуля Уразбахтин Ф.А., д.т.н., профессор Цели: подготовка к профессиональной деятельности специалиста, направленная на создание и эксплуатацию ракетной Цели и задачи техники, которое основано на применении современных методов и средств моделирования. дисциплины, Задачи: - формирование у студентов знаний, умений, навыков и компентенций в области моделирования процессов основные темы функционирования элементов ракетной техники; анализ вариантов возможных принципиальных решений по структуре. функционированию, конструкции; обоснование проектных решений, обеспечивающих пригодность к модернизации создаваемого изделия; моделирование с точностью, позволяющее прогнозировать надежность выбранных конструктивных и технологических решений; теоретические исследования, проводимые в целях изыскания принципов и путей создания новых конструкций и материалов, обоснования технических характеристик, определения условий применения, эксплуатации и ремонта; анализ состояния исследуемого вопроса, определение направления и методов исследований; обеспечение технологичности конструкций, разрабатываемых на этапе ОКР и на этапе выпуска рабочей документации. Знания: основы системного подхода, используемого при создании математических моделей; методы построени математических моделей функционирования элементов ракетной техники и технологического оборудования их изготовления, также эксплуатации наземного оборудования ракет; способы проведения математического моделирования с использование вычислительной техники; средства реализации и анализа математических моделей. Умения: составлять математические модели функционирования элементов ракетной техники и технологии их создания; осуществлять сбор, обработку, анализ и систематизацию научно-технической информации для математического моделирования процессов создания и эксплуатации ракет; применять приемы, способы и методы анализа с помощью математического моделирования функционирования элементов ракетной техники; применять в математическом моделировании численные методы поиска наилучших значений эксплуатационные характеристик элементов ракетной техники. Навыки: использования математических методов анализа и моделирования устройств, узлов, процессов, происходящих в элементах и агрегатах ракетной техники; использования инструмента быстрого и эффективного получения информации, необходимой для принятия решений при проектировании, производстве и эксплуатации элементов ракетной техники; создания математических моделей и их программных реализаций, необходимых для проведения математического моделирования; способами создания и проведения имитационного моделирования процессов, связанных с ракетной техникой. Лекции (основные темы): Роль математического моделирования в технике. Математическая модель. Математические модели простейших типовых элементов и их систем. Алгоритмизация математических моделей. Численные методы при построении математических моделей. Средства моделирования систем. Исследование объектов ракетной техники с помощью моделирования. Основы теории критических ситуаций. Моделирование критических ситуаций в элементах ракетной техники. Практические занятия: Методики создания математических моделей по данным испытаний и экспериментов: статистическими методами, методами аппроксимации, интерполяции и экстраполяция, построения математических моделей по физическим законам: механики, термодинамики, теории горения, ракетных двигателей, внешней баллистики. Создание математических моделей с логическими элементами в форме алгоритмов и программ. Математические пакеты. Использование сеточных методов при численном решении дифференциальных уравнений: обыкновенных, в частных производных. Исследование методом компьютерного моделирования: процесса эксплуатации транспортно-пускового контейнера ракеты; процессов технической эксплуатации и использования по назначению воспламенительных устройств РДТТ; технологических процессов изготовления элементов ракетной техники; процесса работы механосборочного цеха ракетного производства. Анализ объектов ракетной техники с точки зрения возникновения критических ситуаций: твердотопливный ракетный двигатель, устройства разделения частей ракеты. Исследование критических ситуаций: выявление критической ситуации при эксплуатации транспортно-пускового контейнера, определение действительных гарантийных сроков воспламенительных устройств РДТТ; управление развитием критических ситуаций головных частей ракеты. Лабораторные занятия: Методики построения математических моделей по данным испытаний и экспериментов. Методики построения математических моделей по физическим законам. Математические модели с логическими элементами. Использование сеточных методов при численном решении дифференциальных уравнений. Исследование методом компьютерного моделирования. Исследование критических ситуаций. 1. Уразбахтин Ф.А., Уразбахтина А.Ю., Хмелева А.В. Критические ситуации при производстве и технической эксплуатации транспортно-пусковых Основная контейнеров ракет. – М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2009. 408с. 2. Уразбахтин Ф.А., Уразбахтина А.Ю., Репко А.В. литература Динамика критических ситуаций в алмазном пілифовании. – Ижевск: изд-во ИжГТУ, 2005. -176с. 3. Моделирование систем и комплексов [Электронный ресурс]: учебное пособие / С. Е. Душин, А. В. Красов, Ю. В. Литвинов. — Электрон. текстовые данные. -Университет ИТМО, 2010. — 177 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/68669.html. 4. Потапов В. И. Математические модели динамических технических объектов конфликтных ситуаций [Электронный ресурс]: монография. -Электрон. текстовые данные. — Омск: Омский государственный технический университет, 2017. — 124 с. – Режим доступа: http://www.iprbookshop.ru/78441.html Технические стандартно оборудованная лекционная аудитория, компьютерный класс средства Компетенции Приобретаются студентами при освоении модуля Общекультурные ОПК-3. Способность анализировать политические и социально-экономические проблемы, готовность использовать методы Профессиогуманитарных и социально-экономических дисциплин (модулей) в профессиональной деятельности; понимание значения нальные охраны окружающей среды и рационального природопользования. ПК-2. Способность анализировать состояние и перспективы развития как ракетной и ракетно-космической техники в целом, так и ее отдельных направлений, создавать математические модели функционирования объектов ракетной и ракетно-космической техники. ПК-4. Способность проводить техническое проектирование изделий ракетной и ракетно-космической техники с использованием твердотельного компьютерного моделирования в соответствие с единой системой конструкторской документации и на базе современных программных комплексов. ПК-8. Способность проводить математическое моделирование разрабатываемого изделия и его подсистем с использованием методов системною подхода и современных программных продуктов для прогнозирования поведения, оптимизации и изучения функционирования изделия в целом, а также его подсистем с учетом используемых материалов, ожидаемых рисков и возможных отказов. ПК-9. Способность самостоятельно разрабатывать, с помощью алгоритмических языков, программы для исследования процессов, описанных математическими моделями. Практические ЛАБОРАТОРНЫЕ Самостоятельная Форма проведения Лекции Зачетных занятий занятия РАБОТЫ 3 работа единии Всего часов 16

Виды Диф.зач КП/КР Условие зачета Получение Форма проведения Подготовка к лекциям и /зач/ экз самостоятельной работы контроля дисциплины оценки практическим занятиям, к «зачтено» зачету формы зачет Перечень модулей, Математический анализ, Обыкновенные дифференциальные уравнения, Теория вероятности

знание которых математическая статистика, Программирование на языках высокого уровня, Информационные технологии,

 необходимо для
 Теоретическая механика, Теория поиска и принятия решений, Двигательные установки и энергосистемы,

 изучения модуля
 Расчет на прочность и жесткость элементов ракеты, Баллистика ракет, Основы устройства ракет,

 Производственная надежность и гарантийные обязательства, Введение в специальную технику.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Целью подготовка к профессиональной деятельности специалиста, направленная на создание и эксплуатацию ракетной техники, которое основано на применении современных методов и средств моделирования.

Задачи дисциплины:

- формирование у студентов знаний, умений, навыков и компетенций в области моделирования процессов функционирования элементов ракетной техники;
- для проектно-конструкторской деятельности: анализ вариантов возможных принципиальных решений по структуре, функционированию, конструкции; обоснование проектных решений, обеспечивающих пригодность к модернизации создаваемого изделия; моделирование с точностью, позволяющее прогнозировать надежность выбранных конструктивных и технологических решений;
- *для научно-исследовательской деятельности*: теоретические исследования, проводимые в целях изыскания принципов и путей создания новых конструкций и материалов, обоснования технических характеристик, определения условий применения, эксплуатации и ремонта; анализ состояния исследуемого вопроса, определение направления и методов исследований;
- в области производственно-технологической деятельности: обеспечение технологичности конструкций, разрабатываемых на этапе ОКР и на этапе выпуска рабочей документации.

В результате изучения дисциплины студент должен:

знать:

- основы системного подхода, используемого при создании математических моделей;
- методы построения математических моделей функционирования элементов ракетной техники и технологического оборудования их изготовления, а также эксплуатации наземного оборудования ракет;
- способы проведения математического моделирования с использованием вычислительной техники:
- средства реализации и анализа математических моделей;

уметь:

- составлять математические модели функционирования элементов ракетной техники и технологии их создания;
- осуществлять сбор, обработку, анализ и систематизацию научно-технической информации для математического моделирования процессов создания и эксплуатации ракет;
- применять приемы, способы и методы анализа с помощью математического моделирования функционирования элементов ракетной техники;
- применять в математическом моделировании численные методы поиска наилучших значений эксплуатационные характеристик элементов ракетной техники;

владеть навыками:

- использования математических методов анализа и моделирования устройств, узлов, процессов, происходящих в элементах и агрегатах ракетной техники;
- использования инструмента быстрого и эффективного получения информации, необходимой для принятия решений при проектировании, производстве и эксплуатации элементов ракетной техники:
- создания математических моделей и их программных реализаций, необходимых для проведения математического моделирования;
- способами создания и проведения имитационного моделирования процессов, связанных с ракетной техникой.

2. Место дисциплины в структуре ООП ВО:

- **2.1.** Дисциплина «Математические модели функционирования ракетно-космических систем и комплексов» относится к вариативной части Блока 1 «Дисциплины (модули)» ООП ВО.
- 2.2. Изучение дисциплины (модуля) базируется на знаниях, полученных при изучении дисциплин (модулей) и практик: Математический анализ, Обыкновенные дифференциальные уравнения, Теория вероятности и математическая статистика, Программирование на языках высокого уровня, Информационные технологии, Теоретическая механика, Теория поиска и принятия решений, Двигательные установки и энергосистемы, Расчет на прочность и жесткость элементов ракеты, Баллистика ракет, Основы устройства ракет, Производственная надежность и гарантийные обязательства, Введение в специальную технику.
- 2.3. Для изучения дисциплины студент должен:

знать:

- дифференциальное и интегральное исчисления, теорию вероятности и математическая статистика;
- структурное программирование, программные математические программные пакеты, программную среду высокого уровня;
- законы принципы, теоремы, аксиомы механики;
- механику деформируемого тела;
- алгоритмы расчетов на прочность, жесткость, устойчивость элементов ракетной техники;
- основные положения теории надежности элементов ракетной техники;
- механизмы, используемые в отсеках и агрегатах ракеты, определение состояния их равновесия;
- структурный состав ракеты, принципы работы основных узлов и агрегатов;
- типовые программные пакеты математической обработки результатов испытаний;

уметь

- использовать методы вычисления производных и интегралов, решения дифференциальных уравнений;
- составлять алгоритмы, программы для использования вычислительной техники;
- пользоваться математическим аппаратом определения вероятностных характеристик;
- пользоваться типовыми программными пакетами математической обработки результатов испытаний;
- использовать принципы, теоремы, аксиомы механики и положения механики деформируемого тела;
- вычислять показатели и характеристики надежности технических объектов;
- аналитические и эмпирические зависимости между показателями, характеристиками и параметрами узлов, блоков, агрегатов ракетной техники;

владеть:

- методиками определения производных и интегралов, решения дифференциальных уравнений
- приемами программирования на алгоритмических языках высокого уровня;
- способами определения вероятностных характеристик;
- способами структурирования ракеты и выявления принципов работы основных узлов и агрегатов;
- методами динамического и кинематического анализа различных механизмов.
- теоретическими методами определения механических напряжений и деформация, а также механических характеристик материалов, коэффициентов запаса в элементах ракетной техники.

2.4. Освоение данной дисциплины (модуля) необходимо как предшествующее для изучения дисциплин (модулей) и практик: Конструкции ракет, Производство летательных аппаратов, Учебно-исследовательская работа студентов, Преддипломная практика.

3. Требования к результатам освоения дисциплины:

3.1. Знания, приобретаемые в ходе изучения дисциплины

№ п/п	Знания
1.	Основы системного подхода, используемого при создании математических моделей.
2.	Методы построения математических моделей функционирования элементов ракетной техники и технологического оборудования их изготовления, а также эксплуатации наземного оборудования ракет.
3.	Способы проведения математического моделирования с использованием вычислительной техники.
4.	Средства реализации и анализа математических моделей.

3.2. Умения, приобретаемые в ходе изучения дисциплины

№п/п	Умения
1.	Составлять математические модели функционирования элементов ракетной техники и
	технологии их создания.
2.	Осуществлять сбор, обработку, анализ и систематизацию научно-технической
	информации для математического моделирования процессов создания и эксплуатации
	ракет.
3.	Применять приемы, способы и методы анализа с помощью математического
	моделирования функционирования элементов ракетной техники.
4.	Применять в математическом моделировании численные методы поиска наилучших
	значений эксплуатационные характеристик элементов ракетной техники.

3.3. Навыки, приобретаемые в ходе изучения дисциплины

№ п/п	Навыки				
1.	Использования математических методов анализа и моделирования устройств, узлов,				
	процессов, происходящих в элементах и агрегатах ракетной техники.				
2.	Использования инструмента быстрого и эффективного получения информации, необходимой для принятия решений при проектировании, производстве и эксплуатации элементов ракетной техники.				
3.	Создания математических моделей и их программных реализаций, необходимых для проведения математического моделирования;				
4.	Способами создания и проведения имитационного моделирования процессов, связанных с ракетной техникой.				

3.4. Компетенции, приобретаемые в ходе изучения дисциплины

Компетенции	Знания (№№ из 3.1)	Умения (№№ из 3.2)	Навыки (№№ из 3.3)
ОПК-3. Способность анализировать политические и социально- экономические проблемы, готовность использовать методы гуманитарных и социально-экономических дисциплин (модулей) в профессиональной деятельности; понимание значения охраны окружающей среды и рационального природопользования.	4	2	1
ПК-2. Способность анализировать состояние и перспективы развития как ракетной и ракетно-космической техники в целом, так и ее отдельных направлений, создавать математические модели	1,2	1,4	3

функционирования объектов ракетной и ракетно-космической техники.			
ПК-4. Способность проводить техническое проектирование			
изделий ракетной и ракетно-космической техники с	2.2	2.4	4
использованием твердотельного компьютерного моделирования в соответствие с единой системой конструкторской документации и	2,3	3,4	4
на базе современных программных комплексов.			
ПК-8. Способность проводить математическое моделирование			
разрабатываемого изделия и его подсистем с использованием			
методов системною подхода и современных программных	3	1,3	2
продуктов для прогнозирования поведения, оптимизации и			
изучения функционирования изделия в целом, а также его			
подсистем с учетом используемых материалов, ожидаемых рисков			
и возможных отказов.			
ПК-9. Способность самостоятельно разрабатывать, с помощью			
алгоритмических языков, программы для исследования процессов,	4	4	4
описанных математическими моделями.			

4. Структура и содержание дисциплины

4.1. Разделы дисциплин, виды занятий (очная форма обучения)

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)	
1.	Роль математического моделирования в технике.	9	1	1			2	
2.	Математическая модель	9	2 3	1	2	2	8	
3.	Математические модели простейших типовых элементов и их систем	9	4 5	1	2	2	6	
4.	Алгоритмизация математических моделей	9	6 7	1	2	2	8	
5.	Численные методы при построении математических моделей	9	8 9	2	2 2	2 2	8	Контрольная работа 1 1 аттестация
6.	Средства моделирования систем	9	10	1			2	
7.	Исследование объектов ракетной техники с помощью моделирования	9	11 12 13	2 2	2	2 2	10	
8.	Основы теории критических ситуаций	9	14 15	2	2	2	10	
9.	Моделирование критических ситуаций в элементах ракетной техники	9	16	2	2	2	8	Контрольная работа 2. 2 аттестация
	ВСЕГО:			16	16	16	60	

4.2. Содержание разделов курса

№ п/п	Раздел Дисциплины	Знания (№№ из 3.1)	Умения (№№ из 3.2)	Навыки (№№ из 3.3)
1.	Моделирование и научно-технический прогресс.	1	1	1
1.	Основные этапы математического	4	2	3
	моделирования.		_	
	Математические модели в инженерных			
	дисциплинах.	1	2	4
2.	Понятие математической модели.	1	<u>-</u> 1	3
	Структура математической модели.	2	1	4
	Свойства математической модели.	4	3	3
	Структурные и функциональные модели.	4	3	3
	Теоретические и эмпирические модели.	3	2	3
	Особенности функциональных моделей.	2	4	2
	Иерархия математических моделей и формы их	2	т	2
	представления.	1	1	1
3.	Электрические двухполюсники.	4	3	1
3.	1	4 2	3	1
	Простейшие элементы механических систем.	3	3 1	1
	Некоторые элементы тепловых систем.	3	1	1
	Модели элементов, связанных с движением	2	2	1
4	жидкости и газа.	2 2	2	2
4	Способы преобразования математических	2	3	3
	моделей к алгоритмическому виду.	4	4	1
	Вычислительные операции линейной алгебры.	4	4	
	Алгоритмы векторно-конвейерных вычислений.	3	4	3
	О распараллеливании матричных вычислений.	2		
	Операции с разряженными матрицами.	2	4	1
5	Элементы теории уравнений с частными	•		
	производными. Общая характеристика метода	3	4	3
	сеток. Типы сеток. Стационарные уравнения.			
	Нестационарные уравнения теплопроводности.	_		_
	Уравнений колебаний.	2	4	2
6.	Структура и состав вычислительной техникі	4	3	2
	Требования к ЭВМ.			
	Программное обеспечение. Информационное			
	обеспеченно. Техническое обеспечение.			
	Эргономическое обеспечение.	4	2	2
7.	Моделирование процесса эксплуатации	2	3	1
	транспортно-пускового контейнера ракеты.			
	Моделирование процессов технической			
	эксплуатации и использования по назначению			
	воспламенительных устройств РДТТ	2	3	1
	Моделирование технологических процессов			
	изготовления элементов ракетной техники.	2	3	1
8.	Жизненный цикл технических объектов.	1	1	4
	Определение технических систем.	1	2	1
	Структурный и функциональный анализ			
	технических объектов и систем.	3	3	3
	Критические ситуации, возникающие в	-	-	
	жизнедеятельности объектов ракетной техники.	2	3	1
		_		1 -

9.	Структура математической модели.	2	1	3
	Параметры и показатели критических ситуаций.			
	Алгоритмы исследования критических			
	ситуаций.	2	2	1
	Примеры исследования критических ситуаций в			
	элементах ракетной техники.	4	3	2

4.3. Наименование тем лабораторных занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование темы практического занятия	Трудоем- кость (час)
1.	2	Методики использования математических моделей по данным	
		испытаний и экспериментов: статистическими методами,	2
		методами аппроксимации, интерполяции и экстраполяция.	
2.	3	Методики использования математических моделей, созданных	
		на физических законах: механики, термодинамики, теории	2
		горения, ракетных двигателей, внешней баллистики.	
3.	4	Математические модели с логическими элементами в форме	2
		алгоритмов и программ. Математические пакеты.	2
4.	5	Использование сеточных методов при численном решении	
		дифференциальных уравнений: обыкновенных, в частных	4
		производных.	
5.	7	Исследование методом компьютерного моделирования:	
		процесса эксплуатации транспортно-пускового контейнера ракеты;	
		процессов технической эксплуатации и использования по	4
		назначению воспламенительных устройств РДТТ; технологических	4
		процессов изготовления элементов ракетной техники; процесса	
		работы механосборочного цеха ракетного производства.	
6.	8	Анализ объектов ракетной техники с точки зрения	
		возникновения критических ситуаций: твердотопливный	2
		ракетный двигатель, устройства разделения частей ракеты.	
7.	9	Исследование критических ситуаций: выявление критической	
		ситуации при эксплуатации транспортно-пускового контейнера;	
		определение действительных гарантийных сроков хранения	2
		воспламенительных устройств РДТТ; управление развитием	
		критических ситуаций головных частей ракеты.	
		Всего	16

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование темы практического занятия	Трудоем- кость (час)
1.	2	Методики создания математических моделей по данным	
		испытаний и экспериментов: статистическими методами,	2
		методами аппроксимации, интерполяции и экстраполяция.	
2.	3	Методики построения математических моделей по физическим	
		законам: механики, термодинамики, теории горения, ракетных	2
		двигателей, внешней баллистики.	
3.	4	Создание математических моделей с логическими элементами в	2
		форме алгоритмов и программ. Математические пакеты.	2
4.	5	Использование сеточных методов при численном решении	4

		дифференциальных уравнений: обыкновенных, в частных	
		производных.	
5.	7	Исследование методом компьютерного моделирования:	
		процесса эксплуатации транспортно-пускового контейнера ракеты;	
		процессов технической эксплуатации и использования по	2
		назначению воспламенительных устройств РДТТ; технологических	2
		процессов изготовления элементов ракетной техники; процесса	
		работы механосборочного цеха ракетного производства.	
6.	8	Анализ объектов ракетной техники с точки зрения	
		возникновения критических ситуаций: твердотопливный	2
		ракетный двигатель, устройства разделения частей ракеты.	
7.	9	Исследование критических ситуаций: выявление критической	
		ситуации при эксплуатации транспортно-пускового контейнера;	
		определение действительных гарантийных сроков хранения	2
		воспламенительных устройств РДТТ; управление развитием	
		критических ситуаций головных частей ракеты.	
		Всего	16

5. Содержание самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

5.1. Содержание самостоятельной работы

№	Наименование тем	Трудоем-	Форма контроля
этапа		кость (час.)	
			Анализ самостоятельной
			работы по тематике:
1	Роль математического моделирования в	2	Анализ и обсуждение с
1	технике.	2	преподавателем вопросов
			использования моделирования
			в технике
			Анализ, оценивание:
	Математическая модель (подготовка		Обзор методов создания
2	докладов)	8	математических моделей
	докладов)		(прослушивание докладов
			студентов)
	Математические модели простейших	6	Защита индивидуального
3	типовых элементов и их систем		задания
	(выполнение индивидуальных заданий)		
4	Алгоритмизация математических моделей	8	Защита индивидуального
	(выполнение индивидуальных заданий)		задания
	Численные методы при построении	8	Защита индивидуального
5	математических моделей (выполнение		задания
	индивидуальных заданий)		
		2	Обзор существующих средств
6	Средства моделирования систем		моделирования (в форме
			опроса)
	Исследование объектов ракетной техники	10	Отчеты и их защита
7	с помощью моделирования (выполнение		результатов компьютерного
	заданий компьютерного моделирования)		моделирования
8	Основы теории критических ситуаций	10	Отчеты и их защита

	(выполнение заданий компьютерного		результатов компьютерного
	моделирования)		моделирования
	Моделирование критических ситуаций в	8	Отчеты и их защита
9	элементах ракетной техники (выполнение		результатов компьютерного
	заданий компьютерного моделирования)		моделирования

5.2. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины (модуля).

Оценочные средства, используемые для текущего контроля успеваемости студентов и их промежуточной аттестации по итогам освоения дисциплины (модуля), их виды и формы, требования к ним и шкалы оценивания приведены в Приложении к РПД «Фонд оценочных средств по дисциплине «Математические модели функционирования ракетно-космических систем и комплексов».

6. Рекомендуемые образовательные технологии

	Кол-во ауд. часов при
Образовательная технология	изучении дисциплины
	(модуля)
1. Иллюстративный материал, представленный в слайдах.	2
2. Работа в малых группах1	10
Всего (% занятий, проводимых в интерактивных формах)	12(25,0%)

7. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

No	Наименование книги							
п/п		издания						
1.	Уразбахтин Ф.А., Уразбахтина А.Ю. Хмелева А.В. Критические ситуации при	2009						
	производстве и технической эксплуатации транспортно-пусковых контейнеров							
	ракет. – МИжевск: НИЦ «Регулярная и хаотическая динамика», 2009408с.							
2.	Уразбахтин Ф.А., Уразбахтина А.Ю., Репко А.В. Динамика критических ситуаций	2005						
	в алмазном шлифовании. – Ижевск: изд-во ИжГТУ, 2005176с.							
3.	Моделирование систем и комплексов [Электронный ресурс]: учебное	2010						
	пособие / С. Е. Душин, А. В. Красов, Ю. В. Литвинов. — Электрон.							
	текстовые данные. — СПб.: Университет ИТМО, 2010. — 177 с. — 2227-							
	8397. — Режим доступа: http://www.iprbookshop.ru/68669.html							
4.	Потапов В. И. Математические модели динамических технических	2017						
	объектов конфликтных ситуаций [Электронный ресурс]: монография. —							
	Электрон. текстовые данные. — Омск: Омский государственный							
	технический университет, 2017. — 124 с. — 978-5-8149-2545-9. — Режим							
	доступа: http://www.iprbookshop.ru/78441.html							

б) дополнительная литература:

No	Наименование книги	Год издания
Π/Π		
1.	Проектирование технических систем на основе анализа, упорядоченных во	1999
	времени критических состояний/ В.Н. Р	
	епко, Ф.А. Уразбахтин, Б.А. Якимович, Н.Ю. Орлова. –Ижевск: Изд-во	
	ИжГТУ, 1999г268с.	
2.	Введение в математическое моделирование [Электронный ресурс]: учебное	2016
	пособие / В.Н. Ашихмин [и др.]. — Электрон. текстовые данные. — М.:	
	Логос, 2016440 с. Режим доступа: http://www.iprbookshop.ru/66414.html.	
3.	Костюкова Н.И. Основы математического моделирования [Электронный	2016
	ресурс] / Н.И. Костюкова. Электрон. текстовые данные. – М.: Интернет-	
	Университет Информационных Технологий (ИНТУИТ), 2016219 с. Режим	
	доступа: http://www.iprbookshop.ru/73691.html.	
4.	Основы математического моделирования технических систем	2012
	[Электронный ресурс]: учебное пособие / В.И. Аверченков, В.П. Федоров,	
	М.Л. Хейфец. — Электрон. текстовые данные. — Брянск: Брянский	
	государственный технический университет, 2012271 с. Режим доступа:	
	http://www.iprbookshop.ru/7003.html.	

4.	Аносов В.Н. Математические модели источников питания автономных	2009
	транспортных средств [Электронный ресурс]: учебное пособие / В.Н.	
	Аносов. — Электрон. текстовые данные. — Новосибирск: Новосибирский	
	государственный технический университет, 2009. — 44 с. — 978-5-7782-	
	1231-2. — Режим доступа: http://www.iprbookshop.ru/45383.html	
5.	Проектирование исполнительных органов систем управления движением	2011
	космических летательных аппаратов. Часть 1 [Электронный ресурс]:	
	учебное пособие / В. В. Зеленцов, А. Г. Минашин, В. Е. Миненко [и др.];	
	под ред. Б. Б. Петрикевич. — Электрон. текстовые данные. — М.:	
	Московский государственный технический университет имени Н.Э.	
	Баумана, 2011. — 117 с. — 2227-8397. — Режим доступа:	
	http://www.iprbookshop.ru/31184.html	
6.	Влияние невесомости на функционирование различных систем при полете	2013
	космического аппарата [Электронный ресурс]: учебное пособие / В.И.	
	Никитенко, А.С. Попов. — Электрон. текстовые данные. — М.:	
	Московский государственный технический университет имени Н.Э.	
	Баумана, 2013. — 36 с. — 978-5-7038-3719-1. — Режим доступа:	
	http://www.iprbookshop.ru/30866.html	
7.	Бирюков, В. В. Энергетические аспекты функционирования транспортных	2014
	систем [Электронный ресурс]: монография. — Электрон. текстовые данные.	
	— Новосибирск: Новосибирский государственный технический	
	университет, 2014. — 264 с. — 978-5-7782-2538-1. — Режим доступа:	
	http://www.iprbookshop.ru/45210.html	
8.	Программные математические комплексы. Практикум [Электронный	2014
	ресурс]: учебное пособие / Л.А. Коробова, С.Н. Черняева, И.Е. Медведкова.	
	— Электрон. текстовые данные. — Воронеж: Воронежский	
	государственный университет инженерных технологий, 2014. — 68 с. —	
	978-5-00032-25-9. — Режим доступа: http://www.iprbookshop.ru/47442.html	
9.	Адамчук, А. С. Математические методы и модели исследования операций	2014
	(краткий курс) [Электронный ресурс]: учебное пособие / А. С. Адамчук, С.	
	Р. Амироков, А. М. Кравцов. — Электрон. текстовые данные. —	
	Ставрополь: Северо-Кавказский федеральный университет, 2014. — 164 с.	
	— 2227-8397. — Режим доступа: http://www.iprbookshop.ru/62954.html	

в) программное обеспечение:

- 1. KMPlayer.
- 2. Microsoft Office 2016.
- 3. OpenOffice.

г) методические указания

- 1. Математическое моделирование и планирование эксперимента [Электронный ресурс]: методические указания к выполнению домашнего задания / Н. С. Полякова, Г. С. Дерябина, Х. Р. Федорчук. Электрон. текстовые данные. -М.: Московский государственный технический университет имени Н.Э. Баумана, 2010. -36 с. Режим доступа: http://www.iprbookshop.ru/31051.html.
- 2. Никулин, К. С. Математическое моделирование в системе Mathcad [Электронный ресурс]: методические рекомендации по выполнению контрольных работ по курсу «Компьютерное инженерное моделирование» Электрон. текстовые данные. -М.: Московская государственная академия водного транспорта, 2009. -65 с. Режим доступа: http://www.iprbookshop.ru/46717.html.
- 3. Математическое моделирование [Электронный ресурс]: лабораторный практикум / ; Бен сост., А. Э. Смирнов. Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2015. -43 с. Режим доступа: http://www.iprbookshop.ru/61739.html.

- 4. Бушуев А.Ю. Применение функций чувствительности в задачах математического моделирования систем с распределенными параметрами. Часть 1 [Электронный ресурс]: методические указания к курсовому и дипломному проектированию / А.Ю. Бушуев. Электрон. текстовые данные. М.: Московский государственный технический университет имени Н.Э. Баумана, 2011. 48 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/31171.html.
- 5. Гаврюшин, С. С. Твердотельное моделирование камеры ракетного двигателя с применением системы САТІА [Электронный ресурс]: методические указания к выполнению лабораторных работ по курсу «Автоматизация проектирования ракетных двигателей» / С. С. Гаврюшин, А. Р. Полянский, Д. А. Ягодников. Электрон. текстовые данные. М.: Московский государственный технический университет имени Н.Э. Баумана, 2012. 48 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/31273.html.
- 6. Котов Е.А. Исследование динамики манипуляционных систем [Электронный ресурс]: методические указания к лабораторному практикуму по курсу «Моделирование и исследование робототехнических систем» / Е.А. Котов, А.В. Назарова, Т.П. Рыжова. Электрон. текстовые данные. М.: Московский государственный технический университет имени Н.Э. Баумана, 2013. 56 с. 978-5-7038-3651-4. Режим доступа: http://www.iprbookshop.ru/31416.htm

8. Материально-техническое обеспечение дисциплины:

No	Наименование оборудования учебных кабинетов, объектов для проведения занятий с										
п/п	перечнем основного оборудования										
1.	Аудитория №314. Учебная мультимедийная аудитория. Оборудование: парты, ст										
	преподавателя, доска аудиторная, проектор, компьютер.										
2.	Аудитория №219. Именная лаборатория конструирования и проектирования ракет А										
	«Воткинский завод». Оборудование: Парты, стол преподавателя, доска аудиторная. Ноутбу										
	Компьютеры - 13 шт. Телевизор. Стенд (наглядное пособие).										
3.	Аудитория №318. Лаборатория основ ракетной техники. Оборудование: Парты, ст										
	преподавателя, доска аудиторная. Компьютер. Питатель №4 (8к14). Питатели 8к14. Питате										
	8к14. Вольфрамовые рули управления потоком. Стабилизатор ракеты. Макет топливно										
	газогенератора. Руль машинка. Электронные блоки ракет. Шар баллон (аккумулято										
	газогенератора. Заглушка топливной системы ЖРД.										
4.	Аудитория для самостоятельной работы обучающегося - читальный зал Воткинского филиа										
	ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»										

ЛИСТ УТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ НА УЧЕБНЫЙ ГОД

Рабочая программа дисциплины утверждена на ведение учебного процесса в учебном году

Учебный год	«Согласовано»: заведующий кафедрой, ответственной за РПД (подпись, дата)
2018-2019	Измений жет У- Уразбахтин Р. 4.
2019-2020	Измений жет \ — Уразбахтин Ф. 4. Измений нет \ — Уразбахтин Ф. 4. 26.08, 2019 г.
2020-2021	
2021-2022	
2022-2023	e in the second party and the
2023-2024	
2024-2025	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное федеральное образовательное учреждение высшего образования

«Ижевский государственный технический университет имени М.Т. Калашникова» (ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

Воткинский филиал Кафедра «<u>Ракетостроение»</u>

(наименование кафедры)

УТВЕРЖДЕН

на заседании кафедры « 20 » _04_2019 г., протокол № 8

Заведующий кафедрой

Уразбахтин Ф.А.

(подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ПО ДИСЦИПЛИНЕ

Математические модели функционирования ракетнокосмических систем и комплексов

(наименование дисциплины)

<u>24.05.01 – Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов.</u>

<u>Специализация – РАКЕТЫ С РАКЕТНЫМИ ДВИГАТЕЛЯМИ ТВЕРДОГО</u> ТОПЛИВА

(наименование профиля/специализации/магистерской программы)

Специалист

Квалификация (степень) выпускника

Воткинск 2019

Паспорт

фонда оценочных средств по дисциплине

Математические модели функционирования ракетно-

космических систем и комплексов (наименование дисциплины)

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Роль математического моделирования в технике.	ОПК-3, ПК-2, ПК-4, ПК-8, ПК-9	
2	Математическая модель	ОПК-3, ПК-2, ПК-4, ПК-8, ПК-9	
3	Математические модели простейших типовых элементов и их систем	ОПК3, ПК2, ПК-4, ПК-8, ПК-9	
4	Алгоритмизация математических моделей	ОПК-3, ПК-2, ПК-4, ПК-8, ПК-9	
5	Численные методы при построении математических моделей	ПК-2, ПК-4, ПК-8, ПК-9	
6	Средства моделирования систем	ПК-4, ПК-8, ПК-9	
7	Исследование объектов ракетной техники с помощью моделирования	ОПК-3, ПК-2, ПК-4, ПК-8	
8	Основы теории критических ситуаций	ОПК3, ПК2, ПК4, ПК8	Темы для самостоятельной работы
9	Моделирование критических ситуаций в элементах ракетной техники	ОПК3, ПК2, ПК4, ПК8, ПК9	Собеседование по вопросам по лекционному материалу

Наименование темы (раздела) или тем (разделов) берется из рабочей программы дисциплины.

1. Зачетно-экзаменационные материалы

Перечень контрольных вопросов для проверки остаточных знаний и для проведения зачета

- 1. Моделирование и научно-технический прогресс.
- 2. Основные этапы математического моделирования.
- 3. Математические модели в инженерных дисциплинах.
- 4. Понятие математической модели.
- 5. Структура математической модели.
- 6. Свойства математической модели.
- 7. Структурные и функциональные модели.
- 8. Теоретические и эмпирические модели.
- 9. Особенности функциональных моделей.
- 10. Иерархия математических моделей и формы их представления.
- 11. Простейшие элементы механических систем.
- 12. Способы преобразования математических моделей к алгоритмическому виду.
- 13. Вычислительные операции линейной алгебры.
- 14. О распараллеливании матричных вычислений.
- 15. Общая характеристика метода сеток. Типы сеток.
- 16. Стационарные уравнения.
- 17. Нестационарные уравнения теплопроводности.
- 18. Уравнений колебаний.
- 19. Программное обеспечение моделирования.
- 20. Информационное обеспечение моделирования.
- 21. Техническое обеспечение при моделировании.
- 22. Моделирование процесса эксплуатации транспортно-пускового контейнера ракеты.
- 23. Моделирование процессов технической эксплуатации и использования по назначению воспламенительных устройств РДТТ.
- 24. Моделирование технологических процессов изготовления элементов ракетной техники.
- 25. Определение технических систем.
- 26. Критические ситуации, возникающие в жизнедеятельности объектов ракетной техники.
- 27. Структура математической модели.
- 28. Параметры и показатели критических ситуаций.
- 29. Алгоритмы исследования критических ситуаций.
- 30. Анализ возникновения критических ситуаций в твердотопливном ракетном двигателе.
- 31. Анализ возникновения критических ситуаций в устройстве разделения частей ракеты.
- 32. Выявление критической ситуации при эксплуатации транспортно-пускового контейнера.
- 33. Определение действительных гарантийных сроков хранения воспламенительных устройств РДТТ.
- 34. Управление развитием критических ситуаций головных частей ракеты.

2. Комплекты оценочных средств

2.1. Вопросы к собеседованию по лекционному материалу на темы «Математическая модель. Математические модели простейших типовых элементов и их систем. Алгоритмизация математических моделей. Численные методы при построении математических моделей. Средства моделирования систем. Исследование объектов ракетной техники с помощью моделирования. Основы теории критических ситуаций. Моделирование критических ситуаций в элементах ракетной техники»:

- 1. Основные этапы математического моделирования.
- 2. Математические модели в инженерных дисциплинах.
- 3. Понятие математической модели.
- 4. Структура математической модели.
- 5. Свойства математической модели.
- 6. Структурные и функциональные модели.
- 7. Теоретические и эмпирические модели.
- 8. Особенности функциональных моделей.
- 9. Иерархия математических моделей и формы их представления.
- 10. Простейшие элементы механических систем.
- 11. Способы преобразования математических моделей к алгоритмическому виду.
- 12. Общая характеристика метода сеток. Типы сеток.
- 13. Стационарные уравнения.
- 14. Нестационарные уравнения теплопроводности.
- 15. Уравнения колебаний.
- 16. Программное обеспечение моделирования.
- 17. Информационное обеспечение моделирования.
- 18. Моделирование процесса эксплуатации транспортно-пускового контейнера ракеты.
- 19. Моделирование процессов технической эксплуатации и использования по назначению воспламенительных устройств РДТТ.
- 20. Моделирование технологических процессов изготовления элементов ракетной техники.
- 21. Определение технических систем.
- 22. Критические ситуации, возникающие в жизнедеятельности объектов ракетной техники.
- 23. Параметры и показатели критических ситуаций.
- 24. Алгоритмы исследования критических ситуаций.
- 25. Анализ возникновения критических ситуаций в твердотопливном ракетном двигателе.
- 26. Анализ возникновения критических ситуаций в устройстве разделения частей ракеты.
- 27. Выявление критической ситуации при эксплуатации транспортно-пускового контейнера.
- 28. Определение действительных гарантийных сроков хранения воспламенительных устройств РДТТ.
- 29. Управление развитием критических ситуаций головных частей ракеты.

На собеседовании задается три вопроса. Критерии формирования оценок по результатам собеседования:

- «неудовлетворительно» обучающийся не ответил правильно ни на один вопрос;
- «удовлетворительно» обучающийся развернуто и правильно ответил на один вопрос;
- «хорошо» обучающийся развернуто и правильно ответил на два вопроса;
- «отлично» обучающийся развернуто и правильно ответил на три вопроса.

2.2. Примерные варианты заданий для контрольных работ

Контрольная работа 1

Вариант 1

- 1. Структура математической модели.
- 2. Алгоритмы векторно-конвейерных вычислений.

Вариант 2

- 1. Особенности функциональных моделей.
- 2. Общая характеристика метода сеток. Типы сеток.

Контрольная работа 2

Вариант 1

- 1. Моделирование процесса эксплуатации транспортно-пускового контейнера ракеты.
- 2. Определение технических систем.

Вариант 2

- 1. Моделирование технологических процессов изготовления элементов ракетной техники.
- 2. Параметры и показатели критических ситуаций.

3. Темы для самостоятельной работы

Варианты заданий для самостоятельной работы: поиск учебных пособий по данному материалу, подготовка презентации и доклада:

- 1. Обзор и сравнительный анализ современных методов моделирования.
- 2. Новые технологии, используемые при математическом моделирования.
- 3. Овладение навыками моделирования на вычислительной технике процессов, происходящих в ракетной технике.
- 4. Геометрическое моделирование технических систем.
- 5. Методика определения критериев подобия технических систем.
- 6. Основы математической аналогии.
- 7. Принципы математического описания оригинала.
- 8. Принципы установления связи математических описаний модели и оригинала на основе условных критериев подобия.
- 9. Математическое моделирование и программирование в оптимизационных задачах исследования объектов и систем.
- 10. Оптимизационные методы в математическом моделировании процессов.
- 11. Автоматизированное проектирование процессов с помощью логических матриц (таблиц решения).
- 12. Методы моделирования полета ракеты.
- 13. Обзор современных методов математического моделирования.
- 14. Особенности и возможности сопряжения имитационных моделей машиностроительного производства с внешней средой.
- 15. Генетические алгоритмы в машиностроении.
- 16. Теория систем массового обслуживания (СМО) в машиностроении.
- 17. Метод проектирования техпроцессов с помощью топологических графов.

4. Шкалы оценивания

4.1 Критерии оценивания контрольных работ

Оценку «зачтено» за контрольную работу (работы) обучающийся получает при правильном выполнении не менее 80% заданий.

4.2. Критерии формирования оценок на зачете

Согласно балльно-рейтинговой системе, оценку «зачтено» обучающий может получить автоматически при наличии у него 65 и более баллов.

Не допускаются к зачету обучающиеся, имеющие менее 44 баллов включительно.

Допущенным к зачету считается обучающийся:

- имеющий конспект 100% лекций;
- набравший в ходе учебного процесса от 45 до 64 баллов;
- выполнивший все лабораторные задания;
- получивший «удовлетворительно» и выше оценки на собеседованиях;
- выполнивший расчетно-графические работы.

На зачет задается три вопроса. Оценки «Зачтено» заслуживает обучающийся, который развернуто и правильно ответил на два вопроса или ответил на три вопроса с небольшими погрешностями или наводящими вопросами.

5. Методика организации текущего контроля

Вид	Номер	Te	емы л								Форма и методы	Номер	Максимал
обучен	контро							контроля, КТ	раздела РП с	ьный балл			
ИЯ	ль-ной	программы, подлежащие контролю				Ю		по каждой					
	точки		(номер из 4.1)									заданиями	форме
	(KT)												контроля
		1	2	3	4	5	6	7	8	9			
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Лекции	1A	*	*	*	*	*					Письменно	6.1	30
											конт.раб.1		
	2A						*	*	*	*	Письменно	6.1	30
											конт.раб.2		
	3A	*	*	*	*	*	*	*	*	*	Устно доп.	6.1	5
	011										вопросы		
Практи	1A										2.534.5.55		
че-ские	2A												
занятия	3A												
семинар	511												
ы)													
Лабора	1A	*	*	*	*	*					Работа на		5
											занятии		
торные											Устно доп.		
занятия											вопросы	6.1	
	2A						*	*	*	*	Работа на		5
											занятии		
											Устно доп.		
											вопросы	6.1	
	3A	*	*	*	*	*	*	*	*	*	Устно доп.		5
											вопросы	6.1	
Самост	1A											4.1, 6.2	5
-ко	2A											4.1, 6.2	5
тельная												, , , ,	
работа													
Посеще	1A	*	*	*	*							-	5
-ние	2A					*	*	*	*	*		-	5
занятий													
Зачет	В										Вопросы к	6.3	-
	конц										зачету		
	e												
	семес												
	тра												
	Всего баллов											90/1	100

Обозначения, используемые в таблице: 1A, 2A,3A-1, 2,3 контрольная точка (аттестация)